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Chapter 3. The quantum and electromagnetic 
forms of electron theory 
1.0. Introduction 

In the chapter 2 we have shown that the Dirac electron equation is the equation 
of EM wave, moving along a ring trajectory. Thus, the difference between two forms 
– quantum and electromagnetic - consists only in the mathematical form of record: 
the complex form of the EM equations corresponds to the operationally-matrix form 
of the quantum equations.  

The Dirac electron theory has a lot of particularities. In the modern interpretation 
these particularities are considered as mathematical features that do not have a 
physical meaning. The electromagnetic form of part of them we have considered in 
the chapter 2. On the basis of the chapter 2 we will show also that all other 
mathematical particularities of the Dirac electron theory have the known 
electrodynamics sense.  

2.0. Electrodynamics meaning of the forms of the Dirac 
equations  
2.2. The quantum Dirac equation forms with mass 

There are two bispinor Dirac equations (Akhiezer and Berestetskii, 1965; Bethe, 
1964; Schiff, 1955; Fermi, 1960) (the description of the equation characteristics and 
parameters see in the chapter 2): 

 ( )[ ] 0ˆˆˆˆˆ 2 =++ ψβαεα mcpco
rr

,  (1.1) 

 ( )[ ] 0ˆˆˆˆˆ 2 =−− ψβαεα mcpco
rr

,    (1.2) 

which correspond to two signs of the relativistic expression of the electron energy:  

 4222 cmpc +±=
rε ,  (1.3) 

 
but for each sign of the expretion (1.3) there are two Hermitian-conjugate Dirac 
equations. Thus there are two Hermitian-conjugate equations, corresponding to the 
minus sign of the expression (1.3): 

     ( )[ ] 0ˆˆˆˆˆ 2 =++ ψβαεα mcpco
rr

,  (1.4’) 

     ( )[ ] 0ˆˆˆˆˆ 2 =+++ mcpco βαεαψ rr
,   (1.4’') 

and  two equations that correspond to plus signs of (1.3): 
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     ( )[ ] 0ˆˆˆˆˆ 2 =−− ψβαεα mcpco
rr

,  (1.5’) 

     ( )[ ] 0ˆˆˆˆˆ 2 =−−+ mcpco βαεαψ rr
,   (1.5’’) 

We will use further the wave function in the matrix form of the plane EM wave, 
moving as in the chapter 2 along - axis:  y

 

,  ,   (1.6) 
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where  are Pauli spin matrices, give the correct electrodynamics expressions. 
r$σ

2.2. The EM Dirac equation forms 
 Let us consider first two Hermitian-conjugate equations, corresponding to 

the minus sign of the expression (1.3). Using (1.6), from (1.4’) and (1.4’') we obtain: 
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where              

  E
r
ciEij
e

ee
rrr

ππ
ω

4
1

4
== ,  (1.8’)  

  H
r
ciHij
e

em
rrr

ππ
ω

4
1

4
== ,   (1.8’’)  

 



  
 35 

are the complex currents, in which  
h

22mc
e =ω , and 

mc
re 2

h
= . Thus, the 

equations (1.4’) and (1.4’’) are Maxwell equations with complex currents. As we 
see, the Hermitian-conjugate equations (1.7) and (1.8) differ by the current 
directions.  

Let us consider now the equations that correspond to plus signs of (1.3). The 
electromagnetic form of the equation (1.5’) is: 
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Obviously, the electromagnetic form of the equation (1.5’’) will have the 
opposite signs of  the currents comparatively to (1.9). 

Comparing (1.9) and (1.7) we can see that the equation (1.9) can be considered 
as the Maxwell equation of the retarded wave. If we don't want to use the retarded 
wave, we can transform the wave function of the retarded wave to the form: 

 ,   (1.10) 
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Then, contrary to the system (1.9) we get the system (1.8). The transformation of 
the function retψ  to the function advψ  is called the charge conjugation operation. 

Note that the electron and positron wave functions can be considered as the 
retarded and advanced waves. So the above result links also with the theory of 
advanced waves of Wheeler and Feynman (Wheeler and Feynman, 1945;  Wheeler, 
1957). (See also Dirac’s work on time-symmetric classical electrodynamics  (Dirac, 
1938), and about this theme - Konopinski’s book (Konopinski, 1980).  

 



  
 36 

3.0. Electrodynamics meaning of the bispinor forms  
It is known that there are 16 Dirac matrices of 4x4 dimensions. We use the set 

of matrices which used Dirac himself and we will name it α -set (1.4). 
It can be shown that the tensor dimension of bilinear form follows from its 

nonlinear electrodynamics forms. Enumerate corresponding Dirac’s matrices 
(Akhiezer and Berestetskii, 1965; Bethe, 1964; Schiff, 1955): 

βα ˆˆ)1 4 ≡ ,                            (3.1’) 

{ } { }432100 ˆ,ˆ,ˆ,ˆ,ˆˆ,ˆˆ)2 ααααααααµ ≡=
r

,                       (3.1’’) 

43215 ˆˆˆˆˆ)3 ααααα ⋅⋅⋅= ,         (3.1’’’)  

µµ ααα ˆˆˆ)4 5 ⋅=A ,         (3.1’’’’) 

⎪
⎩

⎪
⎨

⎧

=

≠
=−=

νµ

νµαβα
αα

µν

νµµν
,0

,ˆˆˆ
ˆˆ)5

i
,                          (3.2) 

where 1) scalar, 2) 4-vector, 3) pseudoscalar, 4) 4-pseudovector, 5) antisymmetrical 
tensor of second rank are.  

Let's calculate electrodynamics values corresponding to these matrices: 
, where ψαψ ˆ+=O ψ  is given by (1.6): 

1) ( ) ( ) ,8ˆ 1
222222

4 IHEHHEE zxzx πψαψ =−=+−+=+
rr

 where 

I1  is the first scalar (invariant) of Maxwell theory, i.e. the Lagrangian of 
electromagnetic field in vacuum; 

2) ,8ˆ 22 UHEo πψαψ =+=+
rr

 where U is the energy density of 
electromagnetic field; 

   ,88ˆ yPyy gcS
c

rr
ππψαψ −=−=+  where 

rg y  is the momentum density of 

the electromagnetic wave field  moved along the Y-axis. As it is known, the value 
1
c

U g, r⎧
⎨
⎩

⎫
⎬
⎭

 is 4-vector of energy-momentum. 

3) ( ) ( )HEHEHE zzxx

rr
⋅=+=

+ 22ˆ5 ψαψ , which is the 

pseudoscalar of electromagnetic field, and  ( ) 2
2

IHE =⋅
rr

 is the second scalar 
(invariant) of electromagnetic field theory. 

4)  ( ) ( )HEHEHE zzxx

rr
⋅=+=+ 22ˆˆ 05 ψααψ  
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    ( ),2ˆˆ 15 zxzx HHEEi −−=+ ψααψ  

     ,0ˆˆ 25 =+ ψααψ

     ).(ˆˆ 2222
35 zxzx HHEEi +−−−=+ ψααψ

As we will show in the chapter 5, the 4-pseudovector is connected with spirality of 
particles. 

5) Tensor  we can write in compact form: ψαψ µνˆ+

( )
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As we will show below this thensor defines the Lorentz force.  

4.0. About statistical interpretation of  the wave function 
As it is known, from the Dirac equation the probability continuity equation can 

be obtained (Akhiezer and Berestetskii, 1965; Bethe, 1964; Schiff, 1955; Fermi, 
1960): 

 
( ) ( ) ,0,

,
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t
trP
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pr rr
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∂
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   (4.1) 

Here ( ) ψαψ 0ˆ, +=trPpr
r

 is the probability density, and 

( ) ψαψ ˆ, rrr
+−= ctrS pr  is the probability flux density. Using the above results we 

can obtain: ( ) UtrPpr π8, =
r

 and SgcS pr

rrr
π82 == . Then the 

electromagnetic form of the equation (3.15) is: 

 0=+ Sdiv
t

U r

∂
∂

,   (4.2) 

which is the form of energy-momentum conservation law of the EM field. 

5.0. The electrodynamics meaning of the matrices choice 
According to Fermi (Fermi, 1960) "it can prove that all the physical 

consequences of Dirac’s equation do not depend on the special choice of Dirac’s 
matrices… In particular it is possible to interchange the roles of the four matrices by 
unitary transformation. So, their differences are only apparent".  

The matrix sequence )ˆ,ˆ,ˆ( 321 ααα  agrees with the electromagnetic wave, 
which has -direction. A question arises: how to describe the waves, which  have y−
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x  and  - directions? Introducing the axes' indexes, which indicate the 
electromagnetic wave direction, we can write three groups of the matrices, each of 
which corresponds to one and only one wave direction: 

z

         ),ˆ,ˆ( 321 zyx ααα , ),ˆ,ˆ,ˆ( 132 zyx ααα , )ˆ,ˆ,ˆ( 312 xyz ααα . 

Let us choose now the wave function forms, which give the correct Maxwell 
equations for the x  and  - directions. Taking into account (1.6)  as the initial form 
of the  - direction, from it, by means of the indexes’ transposition around the 
circle (see. Fig. 1), we will get other forms. 

z
y−

 
Fig. 1 

 Since in this case the Poynting vector has the minus sign, we can suppose that 
the transposition must be counterclockwise. Let us examine this supposition, 
checking the Poynting vector values:  

The sets ),ˆ,ˆ( 321 zyx ααα , ),ˆ,ˆ,ˆ( 132 zyx ααα , )ˆ,ˆ,ˆ( 312 xyz ααα  correspond 

to the wave functions 
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[ ]yHE
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×−=+ 2ˆ2 ψαψ , 

[ ]xx HE
rr

×−=+ 2ˆ2 ψαψ , [ ]zz HE
rr

×−=+ 2ˆ2 ψαψ   respectively. 
As we see, we took the correct result. We can suppose now that by the clockwise 

indexes’ transposition of the wave functions will describe the electromagnetic waves, 
which move in a positive direction along the co-ordinate axes. Let us prove this: 

The sets ),ˆ,ˆ( 321 zyx ααα , )ˆ,ˆ,ˆ( 132 zyx ααα , )ˆ,ˆ,ˆ( 312 xyz ααα  correspond 

to the wave functions 
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respectively. As we see, once again we get the correct results. 
Now we will prove that the above choice of the matrices and wave functions 

gives the correct electromagnetic equation forms. Using for example equation (1.5’) 
and transposing the indexes clockwise we obtain for the positive direction of the 
electromagnetic wave the following results for x , , -directions correspondingly: y z
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As we can see, we have obtained three equation groups, each of which contains 
four equations, as is necessary for the description of all electromagnetic wave 
directions. In the same way for all other forms of the Dirac equation analogue results 
can be obtained.  

Obviously, it is also possible via canonical transformations to choose the Dirac 
matrices in such a way that the electromagnetic wave will have any direction. Let us 
show it. 

5.1. The EM meaning of canonical transformations of Dirac's 
matrices and bispinors 

The choice (1.7) of the matrices is not unique (Akhiezer and Berestetskii, 1965; 
Schiff, 1955; Fock, 1932). As it is known, there is a free transformation of a kind: 

, where  is a unitary matrix, called the canonical transformation 

operator and also the wave functions 

+= SaS 'α S
'ψ  transformation 'ψψ S= , which does not 

change the results of the theory.          
If we choose matrices 'α  as:       
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then the functions ψ  will be connected to functions 'ψ  according to the 
relationships: 
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The unitary matrix , which corresponds to this transformation, is equal to: S
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It is not difficult to check that by means of this transformation we will also 
receive the equations of the Maxwell theory. Actually, using (1.6) and (5.3) it is easy 
to receive:  

zxzx iHiHEE =
−

=
+

=
+

=
−

2
'',

2
'',

2
'',

2
'' 32413241 ψψψψψψψψ ,   (5.5) 

whence:  

 ,
2
2'

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+−
−
+
+

=

xx

zz

zz

xx

iHE
iHE
iHE
iHE

ψ      (5.6) 

Substituting these functions in the Dirac equation we will receive the correct 
Maxwell equations for the electromagnetic  waves  in double quantity. It  is possible 
to assume, that the functions 'ψ  correspond to the electromagnetic wave, moving 
under the angle of 45 degrees to both coordinate axes.  

Thus, from above it follows that every choice of the Dirac matrices defines only 
the direction of the initial electromagnetic wave.  Obviously, this is a physical origin 
why “the physical consequences   of  Dirac’s   equation   do   not depend  on  the 
special choice of  Dirac’s matrices” (Fermi,1960). 

6.0. The electromagnetic form of the EM electron 
theory Lagrangian 

As a Lagrangian of the Dirac theory can take the expression (Schiff, 1955): 
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 ( ) ,ˆˆˆˆ 2 ψβαεψ mcpcLD ++= + rr
    (6.1) 

For the electromagnetic wave moving along the y− -axis the equation (6.1) 
can be written: 

        ,ˆˆ1 ψβψ
∂
ψ∂αψ

∂
ψ∂ψ +++ −−=

h

mci
ytc

L yD   (6.2) 

Transferring each term of (6.2) in the electrodynamics form we obtain the 
electromagnetic form of the Dirac theory Lagrangian: 

 ( ),
4

22 HEiSdiv
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π
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     (6.3) 

(Note that in the case of the variation procedure we must distinguish the 
complex conjugate field vectors 

r
E * ,

r
H * and 

r
E ,

r
H ). Using the complex 

electrical and "magnetic" currents (1.8’) and (1.8’’) we take: 
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It is interesting that since 0=sL  thanks to (1.6), we can take the equation: 

 ( ) 0=−−+ HjEjSdiv
t

U me rrrrr

∂
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,         (6.5) 

which  has  the form  of the  energy-momentum  conservation law for the Maxwell 
equation with  current. 

7.0. The Lorentz force expression in EM representation 
According  to our theory for the EM particles stability  in the twirled waves (i.e. 

into the EM particles) the force must appear, which is perpendicular to the trajectory 
of motion of the EM fields.  But in this case the tangential force (by our chose – 
along the -axis), must absent, since it would provoke the tangential acceleration 
of the electron fields. 

y

The expression of Lorentz’s force by the energy-momentum tensor of 
electromagnetic field  is well known (Tonnelat, 1959; Ivanenko and Sokolov, 

1949). This tensor is symmetrical and has the following components: 

τ µ
ν

 ,
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4
1 ν

µνν
µ

ν

µ τ∂
π∂

τ∂
π

−≡−=
x

f      (7.1) 

Here, first three components describe the Lorentz force density vector, and 
fourth component corresponds to the energy conservation law.  
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Using (7.1) it can be written: 
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As we see by using of the symmetrical energy-momentum tensor we don’t 
obtain the needed components of the force since here 0)( ≠yf . 

The right result can obtain using antisimmetrical spin tensor µνα  (3.2). Then 

we have: 
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     Using (1.6) and (3.2) we obtain of Lorenz’s force components: 
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For the  linear  photon all the brackets in (7.6) are equal to zero according to 
Maxwell's equation. It means  that  appear  no  forces in linear photon. When photon 
rolls up around any of the axis, which are perpendicular  to  the Y-axis,  we  will get  
the additional current terms.   

If to take that the field vector of type terFF ω−= )(r
rr

 describes geometrically 
the vectors  rotation, we can for the twirled semi-photon write: 
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For  spinning  photon  (Ex, Hz),  the  force  components  are (the upper left index 
shows the spinning  axis OZ or OX). 
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for spinning photon (Ez, Hx): 
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what corresponds to our representations about the dynamics of twirled semi-photon. 

8.0. The equation of the ring EM wave field motion 
We  can  suppose  that  4-vector-potential  of  electromagnetic  field,  multiplied  

to the electron charge e , 
⎭
⎬
⎫

⎩
⎨
⎧ A

c
ee
r

,ϕ  is the 4-vector of the energy-momentum of 

the curvilinear wave field { }pp pr,ε  (see chapter 2).  
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Therefore, the well-known analysis of Dirac's electron equation in the external 
field can be used for the analysis of the equations of the inner twirled photon field 
by the changes: 

 0,, →→→ mepA
c
e

pp εϕrr
,  (8.1) 

As it is known (Akhiezer and Berestetskii, 1965; Schiff, 1955), the equation of 
the electron motion in the external field can be found from the next operator 
equation, having the Poisson brackets 

   ( )OO
it

O
dt
Od ˆˆˆˆ1ˆˆ

Η−Η+=
h∂

∂
,   (8.2) 

where  is the physical value operator, whose variation we want to find and Ô Η̂  is 
the Hamilton operator of Dirac’s equation. 

The Hamilton's operator of the Dirac equation is equal (Schiff, 1955; Akhiezer 
and Berestetskii, 1965): 
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where pppP rrr
−= ˆˆ  is full momentum of  twirled photon. 

For  from (8.3) we have: PO ˆˆ r
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or, substitute 
r r
υ = c $α , where 

r
υ - velocity of the electron matter, we obtain: 
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Since for the motionless electron 0
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dt
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, the motion equation is: 
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Passing to the energy and momentum densities  
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we obtain the equation of matter motion of twirled photon: 
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Let us analyse the physical meaning of (8.8), considering the motion equation 
of ideal liquid in form of Lamb’s-Gromek's equation (Lamb, 1931). In this case, 
when the external forces are absent, this equation is: 
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where U -energy and momentum density of ideal liquid. gl l, r

Comparing (8.8) and (8.9) is not difficult to see their mathematical identity. 
From this follows the interesting conclusion: the inner particles’ equation may be 
interpreted as the motion equation of ideal liquid. 

According to (8.5, 8.6) from (8.9) we have 
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where  is the Lorenz force. As it is known the term  f L [ ]pgrot rr
×υ  in (8.9) is 

responsible for centripetal acceleration. Probably, we have the same in (8.8). If the 
"photon' liquid" move along the ring of  radius, then the angular motion velocity pr

ω  is tied with rot
r
υ  by expression: 

 zpp erot rrr ωωυ 22 == ,   (8.11) 

and centripetal acceleration is 

   rpr
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where  is unit radius-vector, 
rer

rez  - is unit vector of OZ-axis. As a result the 
equation (5.25) has the form of Newton's law: 

        ρ r r
a fn = L ,   (8.13) 

This result can be seen as the electromagnetic representation of the Erenfest 
theorem (Shiff,1955). 
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Conclusion 
The above results proof that the non-linear EM representation of the Dirac 

theory give the classical explanations of all particularities of the Dirac electron 
theory, which nevertheless don’t contradict to the quantum interpretation. 
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